Product Description
Tensioner Pulley V-ribbed belt Car Drive Belt Tensioner for BMW / MINI
OE number:
FEBI BILSTEIN : 49526
Compatible Vehicles:
BMW 1 (F20) 2571/11-
1 (F20) 116 i
2015-
1 (F20) 118 i
2015-
1 (F20) 120 i
2016-
1 (F20) 125 i
2015-
1 (F20) M 140 i
2015-
1 (F20) M 140 i xDrive
2015-
BMW 1 (F21) 2011/12-
1 (F21) 116 i
2015-
1 (F21) 118 i
2015-
1 (F21) 120 i
2015-
1 (F21) 125 i
2015-
1 (F21) M 140 i
2015-
1 (F21) M 140 i xDrive
2015-
BMW 2 Convertible (F23) 2014/03-
2 Convertible (F23) 218 i
2015-
2 Convertible (F23) M 240 i
2015-
2 Convertible (F23) M 240 i xDrive
2015-
BMW 2 Coupe (F22, F87) 2012/10-
2 Coupe (F22, F87) 218 i
2015-
2 Coupe (F22, F87) 230 i
2015-
2 Coupe (F22, F87) M 240 i
2015-
2 Coupe (F22, F87) M 240 i xDrive
2015-
BMW 3 (F30, F80) 2011/03-
3 (F30, F80) 318 i
2015-
3 (F30, F80) 320 i
2014-
3 (F30, F80) 320 i xDrive
2014-
3 (F30, F80) 330 i
2014-
3 (F30, F80) 330 i xDrive
2014-
3 (F30, F80) 340 i
2014-
3 (F30, F80) 340 i
2014-
3 (F30, F80) 340 i xDrive
2014-
3 (F30, F80) 340 i xDrive
2017-
BMW 3 Gran Turismo (F34) 2012/07-
3 Gran Turismo (F34) 320 i
2012-2016
3 Gran Turismo (F34) 320 i xDrive
2012-2016
3 Gran Turismo (F34) 330 i
2015-
3 Gran Turismo (F34) 340 i
2015-
3 Gran Turismo (F34) 340 i xDrive
2015-
BMW 3 Touring (F31) 2011/07-
3 Touring (F31) 318 i
2015-
3 Touring (F31) 320 i
2014-
3 Touring (F31) 320 i xDrive
2014-
3 Touring (F31) 330 i
2016-
3 Touring (F31) 330 i xDrive
2014-
3 Touring (F31) 340 i
2014-
3 Touring (F31) 340 i
2014-
3 Touring (F31) 340 i xDrive
2014-
3 Touring (F31) 340 i xDrive
2014-
BMW 4 Convertible (F33, F83) 2013/10-
4 Convertible (F33, F83) 420 i
2016-
4 Convertible (F33, F83) 430 i
2016-
4 Convertible (F33, F83) 430 i xDrive
2016-
4 Convertible (F33, F83) 440 i
2016-
4 Convertible (F33, F83) 440 i
2016-
4 Convertible (F33, F83) 440 i xDrive
2016-
4 Convertible (F33, F83) 440 i xDrive
2016-
BMW 4 Coupe (F32, F82) 2013/07-
4 Coupe (F32, F82) 418 i
2016-
4 Coupe (F32, F82) 420 i
2016-
4 Coupe (F32, F82) 420 i xDrive
2016-
4 Coupe (F32, F82) 430 i
2016-
4 Coupe (F32, F82) 430 i xDrive
2016-
4 Coupe (F32, F82) 440 i
2016-
4 Coupe (F32, F82) 440 i
2016-
4 Coupe (F32, F82) 440 i xDrive
2016-
4 Coupe (F32, F82) 440 i xDrive
2016-
BMW 4 Gran Coupe (F36) 2014/03-
4 Gran Coupe (F36) 418 i
2015-
4 Gran Coupe (F36) 420 i
2016-
4 Gran Coupe (F36) 420 i xDrive
2016-
4 Gran Coupe (F36) 430 i
2016-
4 Gran Coupe (F36) 430 i xDrive
2016-
4 Gran Coupe (F36) 440 i
2016-
4 Gran Coupe (F36) 440 i
2016-
4 Gran Coupe (F36) 440 i xDrive
2016-
4 Gran Coupe (F36) 440 i xDrive
2016-
BMW 7 (G11, G12) 2014/10-
7 (G11, G12) 730 i, Li
2016-
7 (G11, G12) 740 Li
2015-
7 (G11, G12) 740 Li xDrive
2017-
MINI
COOPER 2.0L L4 Turbocharged
2571
COOPER CLUBMAN 2.0L L4 Turbocharged
2571
COOPER COUNTRYMAN 2.0L L4 Turbocharged
2571
Why choose us ?
1. Quality Control
To ensure the quality of our vehicles and other products, Our QC staffs do strict supplier evaluations, in-coming inspections, in-process inspections, final inspections and pre-delivery inspections. The most important is that we listen to what our customers say and are always looking for ways to improve the quality of our products through continuous improvement.
2. OEM Ability
We have built stable and long-term cooperate relationship with supermarkets,we can also provide ODM, OEM and Agent services to our customers over the world.
3. Parts Available
We have spare parts for immediate delivery to anywhere in the world. While our vehicles become standard with more features than anyone else, we also offer more optional parts for our vehicles than anyone else.
4. Good Warranty
We take customer satisfaction and product quality as the first priority for us. We supply reliable warranties and good after-sales services.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Type: | Belt Tensioner |
---|---|
Transport Package: | Color Box Packing |
Trademark: | VQGC, GXGK, WJT |
Origin: | China |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can you provide guidance on the selection and sizing of belt tensioners for specific belt applications?
When selecting and sizing belt tensioners for specific belt applications, several factors need to be considered to ensure optimal performance and longevity. Here's a detailed guidance on the selection and sizing of belt tensioners:
- Belt Type and Size:
- System Requirements:
- Tensioner Type:
- Tensioner Design and Mounting:
- Tensioner Load Capacity:
- Environmental Considerations:
- Manufacturer Recommendations:
Start by identifying the type and size of the belt used in the application. Belts can vary in terms of width, length, profile (V-belt, timing belt, etc.), and construction material (rubber, polyurethane, etc.). The tensioner should be compatible with the specific belt type and size to ensure proper fit and functionality.
Consider the requirements of the belt-driven system. Evaluate factors such as the desired tension level, operating speed, load conditions, and environmental factors. The tensioner should be capable of providing the required tension force while accommodating the system's operating parameters.
Choose the appropriate tensioner type based on the application's needs. Common types include automatic tensioners, idler pulley tensioners, spring-loaded tensioners, and hydraulic tensioners. Each type has its advantages and limitations, so select the one that best suits the specific belt application.
Consider the design and mounting requirements of the tensioner. Evaluate the space availability, mounting configuration, and alignment with other components in the belt drive system. Some tensioners offer adjustable mounting positions or different design variations to accommodate various installation scenarios.
Check the load capacity of the tensioner to ensure it can handle the expected loads and forces in the belt system. Consider factors such as the belt tension, shock loads, and dynamic forces. The tensioner should have adequate load capacity to prevent premature wear or failure under normal operating conditions.
Assess the environmental conditions in which the tensioner will operate. Factors such as temperature extremes, moisture, dust, chemicals, and exposure to UV radiation can impact the tensioner's performance and durability. Choose a tensioner that is designed to withstand the specific environmental challenges of the application.
Refer to the manufacturer's guidelines and recommendations for selecting and sizing the tensioner. Manufacturers often provide technical data, specifications, and selection guides that assist in choosing the appropriate tensioner for specific belt applications. Follow their recommendations to ensure compatibility and optimal performance.
It is important to note that the selection and sizing of belt tensioners may require technical expertise and consideration of specific application requirements. If in doubt, consult with belt tensioner manufacturers or industry experts who can provide further guidance based on their knowledge and experience.
In summary, when selecting and sizing belt tensioners for specific belt applications, consider the belt type and size, system requirements, tensioner type, design and mounting, load capacity, environmental conditions, and manufacturer recommendations. By carefully evaluating these factors, you can choose a suitable tensioner that ensures proper tensioning, reliable operation, and extended belt life in the belt-driven system.
What is the impact of proper belt tensioning on the lifespan and performance of belts?
Proper belt tensioning has a significant impact on the lifespan and performance of belts. Maintaining the correct tension in belts is crucial for optimal power transmission, minimizing slippage, reducing wear, and ensuring reliable operation. Here's a detailed explanation of the impact of proper belt tensioning:
- Prevents Slippage:
- Reduces Wear and Friction:
- Ensures Optimal Power Transmission:
- Reduces Maintenance Requirements:
- Enhances Belt Lifespan:
- Improves System Reliability:
Proper belt tensioning prevents slippage between the belt and the pulleys or sheaves it is running on. When belts slip, power transmission efficiency decreases, and the belt can wear rapidly. By applying the correct tension, the belt grips the pulleys or sheaves firmly, ensuring efficient power transfer and minimizing slippage, which can lead to improved performance and energy efficiency.
When belts are improperly tensioned, excessive wear and friction can occur. Insufficient tension can cause the belt to slip and slide on the pulleys, generating heat and increasing friction between the belt and the pulley surfaces. This friction leads to premature wear of the belt and the pulleys, reducing their lifespan. On the other hand, excessive tension can put excessive stress on the belt, leading to accelerated wear and potential damage. Proper belt tensioning helps to minimize wear and friction, extending the lifespan of belts and associated components.
Correct tensioning of belts ensures optimal power transmission from the driving pulley to the driven pulley. When belts are properly tensioned, they can efficiently transfer the required power without energy losses due to slippage or excessive tension. This results in improved overall system performance, as the transmitted power is effectively utilized for driving various components or performing specific tasks.
Proper belt tensioning can help reduce maintenance requirements and associated costs. When belts are correctly tensioned, they experience less wear, require fewer adjustments, and have a lower chance of failure or premature replacement. By maintaining the appropriate tension, the need for frequent belt replacements and unplanned downtime due to belt-related issues can be significantly minimized, contributing to improved productivity and cost savings.
The lifespan of belts is directly influenced by proper tensioning. When belts are under the correct tension, they experience less stress, wear, and fatigue. This can prolong the lifespan of the belt, reducing the frequency of replacements and associated costs. Additionally, proper tensioning helps to distribute the load evenly across the belt, preventing localized wear and extending the overall durability of the belt.
Proper belt tensioning contributes to the overall reliability of belt-driven systems. By maintaining the correct tension, the risk of unexpected belt failures, slippage-related issues, and associated equipment downtime is significantly reduced. This ensures that the system operates reliably, minimizing interruptions in production or operation and enhancing overall system efficiency and performance.
In summary, proper belt tensioning plays a vital role in maximizing the lifespan and performance of belts. It prevents slippage, reduces wear and friction, ensures optimal power transmission, reduces maintenance requirements, enhances belt lifespan, and improves system reliability. By following manufacturer recommendations and using appropriate tensioning techniques, operators can optimize belt performance, minimize downtime, and achieve efficient and reliable operation of belt-driven systems.
How do belt tensioners differ from other components in maintaining belt tension?
Belt tensioners play a distinct role in maintaining belt tension compared to other components in belt drive systems. Here's a detailed explanation of how belt tensioners differ from other components:
1. Tension Adjustment:
Belt tensioners are specifically designed to provide an adjustable means of maintaining the proper tension in the belt. They are equipped with mechanisms such as springs, adjustable arms, or brackets that allow for easy tension adjustment. Other components in belt drive systems, such as pulleys or idlers, do not have this specific functionality and rely on external means, such as manual adjustment or fixed positioning, to maintain tension.
2. Active Tension Control:
Belt tensioners actively control and apply force to the belt to maintain tension. They are designed to compensate for belt elongation, thermal expansion, and other factors that can affect tension over time. By applying the appropriate tension, belt tensioners help to prevent belt slippage and maintain efficient power transmission. In contrast, other components, such as fixed pulleys or idlers, do not actively control tension and rely on the initial tension set during installation.
3. Dynamic Tension Compensation:
Belt tensioners are capable of dynamically adjusting the tension in response to changes in operating conditions. For example, in automotive applications, belt tensioners can compensate for variations in engine speed, temperature fluctuations, and belt wear. They can adapt to these changes and maintain the optimal tension level. Other components, such as fixed pulleys or idlers, do not possess this dynamic tension adjustment capability.
4. Vibration and Noise Damping:
Belt tensioners often incorporate features to dampen vibrations and reduce noise in the belt drive system. They act as shock absorbers, absorbing and dissipating vibrations, which helps to minimize belt flutter and reduce noise levels. Other components, such as fixed pulleys or idlers, do not typically have built-in vibration and noise damping properties.
5. Positioning on Slack Side:
Belt tensioners are typically positioned on the slack side of the belt, between the driving pulley and the driven pulley. This positioning allows them to apply tension to the belt where it is needed most, helping to maintain proper engagement and prevent slippage. In contrast, other components, such as fixed pulleys or idlers, are positioned on the tight side of the belt and primarily serve to guide and support the belt.
6. Component Integration:
Belt tensioners are standalone components that are specifically designed for tensioning belts. They are often integrated into the belt drive system as a separate unit, allowing for easy installation, adjustment, and replacement. Other components, such as pulleys or idlers, serve different functions in the system and may be integrated into other mechanisms or structures.
In summary, belt tensioners differ from other components in belt drive systems in their ability to provide adjustable tension control, dynamic tension compensation, vibration and noise damping capabilities, specific positioning on the slack side of the belt, and as standalone components designed solely for tensioning belts. These features make belt tensioners essential for maintaining optimal tension and ensuring the efficient and reliable operation of belt drive systems.
editor by CX 2024-04-30