China factory Genuine Isolation Damper Belt Tensioner Rexton, Korando C, Stavic #6720300003 boat trailer axle

Product Description

Products Description

Product Name belt tensioner assy for Ssangyong
OE NO.

6720300003

Car Type SsangYong Tivoli,,ssangyong musso,ssangyong korando,kyron,chairman,rexton
Size Original
MOQ 1 Pcs
Sample Available
Place of Origin China
Brand Ssangyong
Packing Neutral Packing
Color Original Color
Certification ISO/EMARK
Service 24 Hours Customer Service
Port ZheJiang /ZheJiang /HangZhou

Product Picture:

Company Profile

Laboratory Equipment

Production Line

Packing


Loading

Our Advantages

FAQ

Q1. What is your terms of packing?
A: Generally, we pack our goods in neutral white boxes and brown cartons. If you have legally registered patent,
we can pack the goods in your branded boxes after getting your authorization letters.
Q2. What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We'll show you the photos of the products and packages
before you pay the balance.
Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.
Q4. How about your delivery time?
A: Generally, it will take 30 to 60 days after receiving your advance payment. The specific delivery time depends
on the items and the quantity of your order.
Q5. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.
Q6. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and
the courier cost.
Q7. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
Q8: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ;
2. We respect every customer as our friend and we sincerely do business and make friends with them,
no matter where they come from. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Available
Condition: New
Color: Black
Samples:
US$ 130/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

belt tensioner

What is the role of belt tensioner materials and coatings in performance and longevity?

Belt tensioner materials and coatings play a crucial role in the performance and longevity of belt tensioners. The choice of materials and coatings directly impacts the tensioner's ability to withstand the forces and loads encountered in belt-driven systems, resist wear and corrosion, and maintain consistent performance over time. Here's a detailed explanation of the role of belt tensioner materials and coatings in performance and longevity:

  • Strength and Durability:
  • The materials used in belt tensioners need to possess high strength and durability to withstand the mechanical stresses and loads imposed on them. Tensioner components are subjected to continuous movement and contact with the belt, which can lead to wear, fatigue, and potential failure. High-strength materials, such as hardened steels or alloys, are commonly used to ensure the tensioner's structural integrity and longevity.

  • Wear Resistance:
  • Belt tensioners are exposed to friction and wear as they come into contact with the belt during operation. Materials with excellent wear resistance properties, such as hardened surfaces or wear-resistant coatings, are employed to minimize the wear rate and extend the tensioner's lifespan. These materials and coatings help maintain optimal contact between the tensioner and the belt, reducing the risk of belt slippage and premature failure.

  • Corrosion Resistance:
  • In certain environments, belt tensioners may be exposed to corrosive substances, moisture, or contaminants, which can lead to corrosion and degradation of the tensioner components. Corrosion-resistant materials, such as stainless steel or corrosion-resistant alloys, are often utilized to protect the tensioner against corrosive elements. Additionally, coatings like zinc plating or other protective finishes can be applied to enhance the tensioner's corrosion resistance.

  • Friction Reduction:
  • Reducing friction between the tensioner and the belt is essential for minimizing wear and maintaining consistent tension. Materials or coatings with low friction coefficients can help reduce the frictional forces and energy losses associated with the tensioner's operation. By reducing friction, these materials and coatings contribute to improved efficiency, reduced heat generation, and increased longevity of the tensioner and the entire belt-driven system.

  • Temperature Stability:
  • Belt tensioners are exposed to a wide range of operating temperatures, including both high and low extremes. Materials with good temperature stability and resistance to thermal degradation are essential for reliable tensioner performance. Heat-resistant alloys, high-temperature plastics, or thermal barrier coatings may be utilized to ensure that the tensioner maintains its mechanical properties and functionality under elevated temperatures.

  • Lubrication Enhancement:
  • Some tensioner materials or coatings are designed to enhance lubrication and reduce friction between moving parts. They may have self-lubricating properties or be compatible with specific lubricants used in the belt-driven system. These materials and coatings help reduce wear, heat generation, and the need for external lubrication, contributing to improved performance and extended longevity of the tensioner.

  • Noise and Vibration Damping:
  • Belt tensioners can generate noise and vibration during operation, which can affect the comfort and performance of the belt-driven system. Certain materials or coatings can help dampen vibrations and reduce noise levels, improving the overall system's performance and minimizing potential issues associated with excessive noise or vibrations.

In summary, the choice of belt tensioner materials and coatings is critical for ensuring optimal performance and longevity. Materials with high strength and durability, wear resistance, corrosion resistance, friction reduction, temperature stability, lubrication enhancement, and noise/vibration damping properties contribute to the tensioner's ability to withstand the operational demands of belt-driven systems. By selecting appropriate materials and coatings, manufacturers can enhance the reliability, durability, and overall efficiency of belt tensioners, leading to extended service life and improved performance of the belt-driven systems they are used in.

belt tensioner

Can you explain the principles behind belt tensioner operation and adjustment?

Belt tensioners operate based on a set of principles aimed at maintaining the proper tension in belts. They are designed to apply and control the tension in the belt drive system, ensuring optimal performance and longevity. Here's a detailed explanation of the principles behind belt tensioner operation and adjustment:

  • Tensioning Mechanism:
  • Belt tensioners typically consist of a mechanical mechanism that applies force to the belt, adjusting its tension. The tensioning mechanism can vary depending on the specific design and application. Common types of tensioners include spring-loaded tensioners, hydraulic tensioners, and automatic tensioners. These mechanisms are designed to exert a specific amount of force on the belt, maintaining the desired tension level.

  • Proper Tension Range:
  • Each belt has a specific tension range recommended by the manufacturer. This range ensures optimal power transmission, minimal slippage, and reduced wear. Belt tensioners are adjusted to operate within this recommended tension range. It is important to follow the manufacturer's guidelines or specifications to determine the appropriate tension for a specific belt and application.

  • Belt Deflection:
  • During operation, belts experience a certain degree of deflection or sag between the pulleys. Belt tensioners account for this deflection and compensate for it by applying the appropriate tension. The tensioner mechanism is adjusted to ensure that the belt maintains the desired tension even when subjected to deflection. This helps to prevent excessive slack or tightness in the belt, optimizing power transmission and minimizing wear.

  • Adjustment and Maintenance:
  • Belt tensioners require periodic adjustment and maintenance to ensure optimal performance. The adjustment process involves inspecting the belt tension, evaluating its deflection, and making necessary adjustments to bring it within the recommended tension range. Tensioners may feature adjustment bolts, nuts, or other mechanisms that allow for precise tension adjustments. It is essential to follow the manufacturer's instructions and use appropriate tools to adjust the tensioner correctly.

  • Monitoring and Inspection:
  • Regular monitoring and inspection of belt tensioners are crucial for their effective operation. This involves visually examining the tensioner for signs of wear, damage, or misalignment. It is also important to check the belt tension regularly using appropriate tension measuring tools or techniques. By monitoring the tensioner and the belt's condition, any issues can be identified and addressed promptly, ensuring optimal tension and preventing potential problems.

  • Consideration of Environmental Factors:
  • Environmental factors such as temperature, humidity, and operating conditions can influence belt tension. Belt tensioners should be adjusted and maintained considering these factors. For example, temperature changes can cause the belt to expand or contract, affecting its tension. Tensioners may incorporate features to compensate for such variations, ensuring consistent tension under different environmental conditions.

In summary, belt tensioner operation and adjustment are based on principles that involve applying the appropriate tension to the belt, accounting for deflection, operating within the recommended tension range, and considering environmental factors. Tensioners are adjusted and maintained to ensure optimal power transmission, minimize wear, and prevent issues such as slippage or excessive tension. Regular monitoring and inspection of tensioners and belts are essential for their reliable operation and longevity.

belt tensioner

How do belt tensioners differ from other components in maintaining belt tension?

Belt tensioners play a distinct role in maintaining belt tension compared to other components in belt drive systems. Here's a detailed explanation of how belt tensioners differ from other components:

1. Tension Adjustment:

Belt tensioners are specifically designed to provide an adjustable means of maintaining the proper tension in the belt. They are equipped with mechanisms such as springs, adjustable arms, or brackets that allow for easy tension adjustment. Other components in belt drive systems, such as pulleys or idlers, do not have this specific functionality and rely on external means, such as manual adjustment or fixed positioning, to maintain tension.

2. Active Tension Control:

Belt tensioners actively control and apply force to the belt to maintain tension. They are designed to compensate for belt elongation, thermal expansion, and other factors that can affect tension over time. By applying the appropriate tension, belt tensioners help to prevent belt slippage and maintain efficient power transmission. In contrast, other components, such as fixed pulleys or idlers, do not actively control tension and rely on the initial tension set during installation.

3. Dynamic Tension Compensation:

Belt tensioners are capable of dynamically adjusting the tension in response to changes in operating conditions. For example, in automotive applications, belt tensioners can compensate for variations in engine speed, temperature fluctuations, and belt wear. They can adapt to these changes and maintain the optimal tension level. Other components, such as fixed pulleys or idlers, do not possess this dynamic tension adjustment capability.

4. Vibration and Noise Damping:

Belt tensioners often incorporate features to dampen vibrations and reduce noise in the belt drive system. They act as shock absorbers, absorbing and dissipating vibrations, which helps to minimize belt flutter and reduce noise levels. Other components, such as fixed pulleys or idlers, do not typically have built-in vibration and noise damping properties.

5. Positioning on Slack Side:

Belt tensioners are typically positioned on the slack side of the belt, between the driving pulley and the driven pulley. This positioning allows them to apply tension to the belt where it is needed most, helping to maintain proper engagement and prevent slippage. In contrast, other components, such as fixed pulleys or idlers, are positioned on the tight side of the belt and primarily serve to guide and support the belt.

6. Component Integration:

Belt tensioners are standalone components that are specifically designed for tensioning belts. They are often integrated into the belt drive system as a separate unit, allowing for easy installation, adjustment, and replacement. Other components, such as pulleys or idlers, serve different functions in the system and may be integrated into other mechanisms or structures.

In summary, belt tensioners differ from other components in belt drive systems in their ability to provide adjustable tension control, dynamic tension compensation, vibration and noise damping capabilities, specific positioning on the slack side of the belt, and as standalone components designed solely for tensioning belts. These features make belt tensioners essential for maintaining optimal tension and ensuring the efficient and reliable operation of belt drive systems.

China factory Genuine Isolation Damper Belt Tensioner Rexton, Korando C, Stavic #6720300003   boat trailer axleChina factory Genuine Isolation Damper Belt Tensioner Rexton, Korando C, Stavic #6720300003   boat trailer axle
editor by CX 2024-03-21