Product Description
MIC NO | OEM.NO | APPLICATION | YEAR | PHOTO |
TB34OP8801 | 257815 CHEVROLET : 96184932 CHEVROLET : 96298799 CHEVROLET : 96435138 CHEVROLET : 96459042 CZPT : 96184932 CZPT : 96298799 CZPT : 96435138 CZPT : 96459042 OPEL : 134571 OPEL : 1340541 OPEL : 1340542 OPEL : 1340544 OPEL : 24412292 OPEL : 634571 OPEL : 9 0571 430 OPEL : 90448220 OPEL : 90505719 OPEL : 9 0571 129 SUZUKI : 9516085Z00 |
BUICK SKYLARK 2.4 CADILLAC BLS 2.0 T Flexpower CHEVROLET ALERO 2.4 16V CHEVROLET CAPTIVA (C100, C140) 2.4 CHEVROLET EPICA (KL1_) 2.0 CHEVROLET EVHangZhou 2.0 CHEVROLET LACETTI (J200) 1.8 CHEVROLET NUBIRA Estate 1.8 CHEVROLET REZZO MPV (U100) 2.0 CHEVROLET ZAFIRA (F75) 2.0 DAEWOO EVHangZhou (KLAL) 2.0 DAEWOO LEGANZA (KLAV) 2.0 16V DAEWOO NUBIRA (J100) 2.0 16V DAEWOO NUBIRA Saloon (J100) 2.0 16V DAEWOO NUBIRA Saloon (J200) 1.8 DAEWOO NUBIRA Wagon (J100) 1.6 16V DAEWOO NUBIRA Wagon (J200) 1.8 DAEWOO REZZO (U100) 2.0 LADA 110 (2110) 2.0 i (21106) LOTUS EUROPA S 2.0 Turbo OPEL ANTARA (L07) 2.4 OPEL ASTRA F (T92) 1.4 (F19, M19) OPEL ASTRA F (T92) 1.6 (F19, M19) OPEL ASTRA F (T92) 1.8 i (F19, M19) OPEL ASTRA F (T92) 2.0 i (F19, M19) OPEL ASTRA F CLASSIC Estate (T92) 1.6 i 16V (F35, M35) OPEL ASTRA F CLASSIC Hatchback (T92) 1.6 i 16V (F08, M08, F68, M68) OPEL ASTRA F CLASSIC Saloon (T92) 1.6 i 16V (F19, M19) OPEL ASTRA F Convertible (T92) 1.4 i 16V OPEL ASTRA F Convertible (T92) 1.6 i OPEL ASTRA F Convertible (T92) 1.8 i 16V OPEL ASTRA F Convertible (T92) 2.0 i OPEL ASTRA F Estate (T92) 1.4 (F35, M35) OPEL ASTRA F Estate (T92) 1.6 (F35, M35) OPEL ASTRA F Estate (T92) 1.8 i (F35, M35) OPEL ASTRA F Estate (T92) 2.0 i (F35, M35) OPEL ASTRA F Hatchback (T92) 1.4 (F08, M08, F68, M68) OPEL ASTRA F Hatchback (T92) 1.6 (F08, M08, F68, M68) OPEL ASTRA F Hatchback (T92) 1.8 i (F08, M08, F68, M68) OPEL ASTRA F Hatchback (T92) 2.0 GSI 16V (F08, M08, F68, M68) OPEL ASTRA F Van (T92) 1.6 i (F70) OPEL ASTRA G Convertible (T98) 2.0 16V Turbo (F67) OPEL ASTRA H (A04) 2.0 Turbo (L48) OPEL CALIBRA A (C89) 2.0 i (M07) OPEL COMBO (71_) 1.4 OPEL CORSA B (S93) 1.4 i (F08, F68, M68) OPEL CORSA B (S93) 1.6 GSI 16V (F08, F68, M68) OPEL CORSA B Box (S93) 1.4 i (F08, W5L) OPEL FRONTERA A (U92) 2.2 i (54MWL4) OPEL FRONTERA A Sport (U92) 2.0 i (52SUD2, 55SUD2) OPEL FRONTERA B (U99) 2.2 i (6B_ZC, 6B_VF, 6B_66, 6B_76) OPEL OMEGA B (V94) 2.0 (F69, M69, P69) OPEL OMEGA B (V94) 2.2 16V (F69, M69, P69) OPEL SINTRA (APV) 2.2 i 16V (OUN16, Y94) OPEL SPEEDSTER (E01) 2.0 Turbo (R97) OPEL TIGRA (S93) 1.4 16V (F07) OPEL TIGRA (S93) 1.6 16V (F07) OPEL VECTRA A (J89) 1.6 i (F19, M19) OPEL VECTRA A (J89) 1.8 i Cat (F19, M19) OPEL VECTRA A (J89) 2.0 i (F19, M19) OPEL VECTRA A (J89) 2000 16V 4x4 (F19, M19) OPEL VECTRA A Hatchback (J89) 1.6 i (F68, M68) OPEL VECTRA A Hatchback (J89) 1.8 i (F68, M68) OPEL VECTRA A Hatchback (J89) 2.0 i (F68, M68) OPEL VECTRA B (J96) 1.6 i (F19) OPEL VECTRA B (J96) 2.0 i (F19) OPEL VECTRA B Estate (J96) 1.6 i (F35) OPEL VECTRA B Estate (J96) 1.8 i 16V (F35) OPEL VECTRA B Estate (J96) 2.0 i 16V (F35) OPEL VECTRA B Hatchback (J96) 1.6 i (F68) OPEL VECTRA B Hatchback (J96) 1.8 i 16V (F68) OPEL VECTRA B Hatchback (J96) 2.0 i 16V (F68) OPEL ZAFIRA / ZAFIRA FAMILY B (A05) 2.0 (M75) OPEL ZAFIRA A MPV (T98) 2.0 OPC (F75) |
1995-1999 2007- 1999-2004 2006- 2005-2006 2005- 2005- 2005-2009 2005- 2001-2012 2002- 2000-2004 1997- 2000- 2003- 1997-1999 2003- 2001-2004 1996-2000 2008- 2008-2011 1992-1998 1995-1998 1992-1998 1992-1998 1998-2005 1998-2002 1998-2002 1996-2001 1996-2001 1994-2001 1993-1994 1992-1998 1995-1998 1991-1998 1991-1994 1991-1993 1995-1998 1991-1998 1991-1998 1993-1996 2002-2005 2004-2571 1989-1996 1994-2001 1993-2000 1993-2000 1999-2000 1995-1998 1992-1998 1998-2004 1994-2000 1999-2003 1996-1999 2002-2006 1994-2000 1994-1998 1993-1995 1990-1995 1988-1990 1989-1990 1993-1995 1988-1990 1988-1990 1995-2002 1995-2002 1996-2000 1996-2000 1996-2000 1995-2003 2000-2003 1995-2000 2005-2571 2001-2005 |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Technical Support |
---|---|
Warranty: | One year or 50, 000kms |
Car Model: | FOR CHEVROLET |
Samples: |
US$ 15/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can you provide guidance on the selection and sizing of belt tensioners for specific belt applications?
When selecting and sizing belt tensioners for specific belt applications, several factors need to be considered to ensure optimal performance and longevity. Here's a detailed guidance on the selection and sizing of belt tensioners:
- Belt Type and Size:
- System Requirements:
- Tensioner Type:
- Tensioner Design and Mounting:
- Tensioner Load Capacity:
- Environmental Considerations:
- Manufacturer Recommendations:
Start by identifying the type and size of the belt used in the application. Belts can vary in terms of width, length, profile (V-belt, timing belt, etc.), and construction material (rubber, polyurethane, etc.). The tensioner should be compatible with the specific belt type and size to ensure proper fit and functionality.
Consider the requirements of the belt-driven system. Evaluate factors such as the desired tension level, operating speed, load conditions, and environmental factors. The tensioner should be capable of providing the required tension force while accommodating the system's operating parameters.
Choose the appropriate tensioner type based on the application's needs. Common types include automatic tensioners, idler pulley tensioners, spring-loaded tensioners, and hydraulic tensioners. Each type has its advantages and limitations, so select the one that best suits the specific belt application.
Consider the design and mounting requirements of the tensioner. Evaluate the space availability, mounting configuration, and alignment with other components in the belt drive system. Some tensioners offer adjustable mounting positions or different design variations to accommodate various installation scenarios.
Check the load capacity of the tensioner to ensure it can handle the expected loads and forces in the belt system. Consider factors such as the belt tension, shock loads, and dynamic forces. The tensioner should have adequate load capacity to prevent premature wear or failure under normal operating conditions.
Assess the environmental conditions in which the tensioner will operate. Factors such as temperature extremes, moisture, dust, chemicals, and exposure to UV radiation can impact the tensioner's performance and durability. Choose a tensioner that is designed to withstand the specific environmental challenges of the application.
Refer to the manufacturer's guidelines and recommendations for selecting and sizing the tensioner. Manufacturers often provide technical data, specifications, and selection guides that assist in choosing the appropriate tensioner for specific belt applications. Follow their recommendations to ensure compatibility and optimal performance.
It is important to note that the selection and sizing of belt tensioners may require technical expertise and consideration of specific application requirements. If in doubt, consult with belt tensioner manufacturers or industry experts who can provide further guidance based on their knowledge and experience.
In summary, when selecting and sizing belt tensioners for specific belt applications, consider the belt type and size, system requirements, tensioner type, design and mounting, load capacity, environmental conditions, and manufacturer recommendations. By carefully evaluating these factors, you can choose a suitable tensioner that ensures proper tensioning, reliable operation, and extended belt life in the belt-driven system.
How do belt tensioners contribute to reducing vibrations and noise in machinery?
Belt tensioners play a significant role in reducing vibrations and noise in machinery. They contribute to the smooth operation of belt-driven systems by maintaining proper belt tension, which helps minimize dynamic belt movements and associated vibrations. Here's a detailed explanation of how belt tensioners contribute to reducing vibrations and noise:
- Stabilizing Belt Movement:
- Minimizing Belt Resonance:
- Damping Vibrations:
- Reducing Belt Slippage:
- Minimizing Belt Flapping:
- Promoting Stable Rotational Motion:
Proper tensioning of belts helps stabilize their movement during operation. When belts are under the correct tension, they are less likely to experience excessive lateral or longitudinal movements. These movements, known as belt flutter or belt whip, can cause vibrations and noise. Belt tensioners apply the necessary force to keep the belt properly tensioned, preventing excessive movement and reducing the generation of vibrations and associated noise.
Belt resonance refers to the phenomenon where a belt's natural frequency coincides with the operating speed of the system, leading to excessive vibrations and noise. Proper belt tensioning helps to minimize belt resonance by ensuring that the belt operates within its stable tension range. By avoiding resonance conditions, belt tensioners contribute to a smoother operation, reducing vibrations and noise caused by belt resonance.
Belt tensioners can also act as vibration dampers. They absorb or dissipate some of the vibrations generated by the rotating components connected by the belt. The tensioner's design may incorporate features such as dampening springs or rubber elements that help absorb and dampen vibrations. This damping effect reduces the transmission of vibrations through the belt, resulting in reduced overall vibration levels and associated noise.
Improper tensioning can lead to belt slippage, where the belt slips on the pulleys or sheaves instead of maintaining a firm grip. Belt slippage generates friction and can cause vibrations and noise. Belt tensioners ensure that the belt remains properly tensioned, minimizing the risk of slippage and reducing associated vibrations and noise.
When belts are not properly tensioned, they can exhibit flapping or flailing movements, especially at higher speeds. These movements can generate vibrations and noise. Belt tensioners help maintain the correct tension, keeping the belt taut and preventing excessive flapping. By minimizing belt flapping, tensioners contribute to a smoother operation with reduced vibrations and noise.
A properly tensioned belt ensures stable rotational motion of the pulleys or sheaves it is driving. When belts are under the correct tension, they maintain a consistent grip on the pulleys, preventing sudden slips or variations in rotational motion. This stability in rotational motion helps minimize vibrations and associated noise, resulting in smoother and quieter machinery operation.
In summary, belt tensioners contribute to reducing vibrations and noise in machinery by stabilizing belt movement, minimizing belt resonance, damping vibrations, reducing belt slippage, minimizing belt flapping, and promoting stable rotational motion. By maintaining proper belt tension, tensioners help achieve smoother operation, reduce vibrations, and minimize the generation and transmission of noise, resulting in improved comfort, efficiency, and reliability of the machinery.
Can you explain the importance of proper belt tensioning in machinery and automotive applications?
Proper belt tensioning is of utmost importance in machinery and automotive applications as it directly affects the performance, efficiency, and reliability of belt-driven systems. Here's a detailed explanation of the importance of proper belt tensioning:
- Power Transmission Efficiency:
- Belt Life and Reliability:
- Reduced Noise and Vibration:
- Optimal Load Distribution:
- Improved Safety:
Proper belt tensioning ensures efficient power transmission from the driving pulley to the driven pulley. When a belt is under-tensioned, it can slip on the pulleys, resulting in a loss of power and reduced efficiency. On the other hand, over-tensioning can cause excessive friction, increased wear, and unnecessary strain on the components. By maintaining the optimal tension, the belt can effectively transfer power without slipping, maximizing the overall efficiency of the machinery or vehicle.
Correct belt tensioning significantly impacts the lifespan and reliability of the belt itself. Insufficient tension can lead to belt slippage, which causes wear and can result in the premature failure of the belt. Conversely, excessive tension can accelerate wear, increase stress on the belt, and cause it to stretch or deform over time. By maintaining the proper tension, the belt experiences less wear and fatigue, leading to a longer service life and improved reliability.
Improper belt tensioning can contribute to excessive noise and vibration in machinery and automotive systems. When a belt is either under-tensioned or over-tensioned, it can cause vibrations that propagate through the system, leading to noise and discomfort. Proper tensioning helps to minimize belt vibrations, ensuring smoother operation and reducing noise levels, which is particularly important in applications where noise reduction is desired, such as in automotive interiors or precision machinery.
The correct tension in a belt allows for the proper distribution of the load across the belt and the pulleys. Insufficient tension can result in uneven load distribution, causing localized stress on certain sections of the belt and pulleys. This can lead to accelerated wear and potential failure of the system. Proper tensioning ensures that the load is evenly distributed, minimizing stress concentrations and promoting balanced wear, thereby improving the longevity and performance of the belt drive system.
Proper belt tensioning is crucial for maintaining safe operation in machinery and automotive applications. Inadequate tension can lead to unexpected belt slippage, which can result in sudden loss of power, reduced braking effectiveness, or compromised operation of auxiliary systems. On the other hand, excessive tension can generate excessive heat, leading to belt degradation or even catastrophic failure. By ensuring the correct tension, the risk of these safety hazards is minimized, enhancing the overall safety of the equipment or vehicle.
In conclusion, proper belt tensioning is essential in machinery and automotive applications to ensure efficient power transmission, prolong belt life, reduce noise and vibration, achieve optimal load distribution, and enhance safety. Following manufacturer guidelines and regularly inspecting and adjusting the belt tension can help maintain the desired tension levels and maximize the performance and reliability of belt-driven systems.
editor by CX 2024-04-09